Fibonacci Modified

We define a *modified* Fibonacci sequence using the following definition:

Given terms t_i and t_{i+1} where $i \in [1,\infty)$, term t_{i+2} is computed using the following relation:

$$t_{i+2} = t_i + (t_{i+1})^2$$

For example, if term $t_1=0$ and $t_2=1$, term $t_3=0+1^2=1$, term $t_4=1+1^2=2$, term $t_5=1+2^2=5$, and so on.

Given three integers, t_1 , t_2 , and n, compute and print term t_n of a modified Fibonacci sequence.

Note: The value of t_n may exceed the range of a 64-bit integer. Many submission languages have libraries that can handle such large results but, for those that don't (e.g., C++), you will need to be more creative in your solution to compensate for the limitations of your chosen submission language.

Input Format

A single line of three space-separated integers describing the respective values of t_1 , t_2 , and n.

Constraints

- $0 \le t_1, t_2 \le 2$
- $3 \le n \le 20$
- t_n may exceed the range of a 64-bit integer.

Output Format

Print a single integer denoting the value of term t_n in the modified Fibonacci sequence where the first two terms are t_1 and t_2 .

Sample Input

015

Sample Output

5

Explanation

The first two terms of the sequence are $t_1=0$ and $t_2=1$, which gives us a modified Fibonacci sequence of $\{0,1,1,2,5,27,\ldots\}$. Because n=5, we print term t_5 , which is 5.